
(C) 1993 BASIC d.o.o Ljubljana,

Jure Spiler,

Jesenkova 5,

61000 Ljubljana, Slovenia

tel: +386 1 314 069

fax: +386 1 318 211

CompuServe: [70541,1765]

e-mail:

JureSpiler,directorjure.spiler@public1.noprmd.
mail.si

Joze Marincek joze.marincek@uni-lj.si

Lisp2C 1.9 25.06.93(C)
BASIC d.o.o.

1



Lisp2C

AutoLISP to C (ADS) treanslator user's
guide

version 1.9 (22-June-1993)

Table of Contents

Lisp2C 1.9 25.06.93(C)
BASIC d.o.o.

1



1. INTRODUCTION

Lisp2Cads translates an AutoLISP source file(s)
into C source files that can be further compiled
using the Watcom or Metaware C compiler.

Why would anyone bother to compile the
existing .LISP code?

First, this completely protects your algorithms. If
you use ordinary AutoLISP, you have to provide
source that can be read by AutoCAD. But then it
can also be read by a human. Therefore all of
your know-how is exposed to everyone
interested.

Second, an ADS environment is gaining more
and more acceptance. Lisp2C is a great way to
preserve all your investments into Lisp (trainig,
coding) and slowly moving to the ADS.

And finally, Lisp2C also includes a debugging
tool that is easy to use yet powerful.

Requirements are:
� AutoCAD R12 (Dos, Windows)
� Watcom C/386 9.0 (9.01d required for

Windows), or
�
Metaware C/C++ 3.1 and PharLap DOS
Extender/Linker

You need DOS4GW.EXE to
run L2C.EXE!

Lisp2Cads consists of:

Lisp2C 1.9 25.06.93(C)
BASIC d.o.o.

2



1. QSTART.TXT How to quick - start
LISP2C

LISP2C.DOC This file (Word for
Windows)

LISP2C.TXT This file (ASCII)

2. L2C.EXE Lisp to C compiler

3. L2C.H Header file, included into
source

4. L2C.LIB Libs: (Watcom -DOS)

WINL2C.LIB (Watcom - Windows)

MWL2C.LIB (Metaware - DOS)

MWWINL2C.LIB (Metaware -
Windows)

5. DEMO.LSP Sample Lisp program

6. DLINE.LSP Sample LISP from
ACAD12

STARTUP.LSP Direct statements from DLINE
DLINE.L2C Project file to compile DLINE.
LSP

Other example files may appear in
distribution.

2. INSTALLATION

2.1.DOS - WATCOM

Lisp2C 1.9 25.06.93(C)
BASIC d.o.o.

2



Install your Watcom C/386 9.0 or later compiler
and compile at least one sample file (eg
TOWER.C) from \ACAD\ADS, to ensure that
the compiler is set up properly.

Place the files L2C.EXE (Lips2C translator) and
DOS4GW.EXE (Watcom DOS extender) into
directory pointed by a system variable PATH.
We suggest C:\DOS or C:\ACAD directory.

Place L2C.LIB and L2C.H files into \ACAD\
ADS directory. Point to this directory with L2C
variable:

SET L2C=C:\ACAD\ADS
Change INCLUDE variable to include \ACAD\
ADS directory:

SET INCLUDE=C:\WATCOM\H;C:\
ACAD\ADS

2.2.DOS - METAWARE

Install your Metaware HighC/C++ 3.1 compiler
and compile at least one sample file (eg
TOWER.C) from \ACAD\ADS, to ensure that
the compiler is set up properly.

Place the files L2C.EXE (Lips2C translator) and
DOS4GW.EXE (Watcom DOS extender) into
directory pointed by a system variable PATH.
We suggest C:\DOS or C:\ACAD directory.

Place MWL2C.LIB and L2C.H files into \
ACAD\ADS directory. Point to this directory
with L2C variable:

SET L2C=C:\ACAD\ADS

Lisp2C 1.9 25.06.93(C)
BASIC d.o.o.

2



Change IPATH variable to include \ACAD\
ADS directory:

SET IPATH=C:\HIGHC\H;C:\ACAD\
ADS

Note that paths must be set before Lisp file is
converted into C source. L2C uses the values of
these variables to produce .BAT and .MW files.
If those values are not set or set properly, .BAT
and .MW files may not compile the C files. This
does not, however, corrupt produced C code in
any way.

2.3.WINDOWS - WATCOM

Install your Watcom C/386 9.01d or later
compiler and compile at least one sample file (eg
TOWER.C) from \ACADWIN\ADS, to ensure
that the compiler is set up properly.

Place the files L2C.EXE (Lips2C translator) and
DOS4GW.EXE (Watcom DOS extender) into
directory pointed by a system variable PATH.
We suggest C:\DOS or C:\ACADWIN directory.

Place L2CWIN.LIB and L2C.H files into \
ACADWIN\ADS directory. Point to this
directory with L2C variable:

SET L2C=C:\ACADWIN\ADS
Change INCLUDE variable to include \
ACADWIN\ADS:

SET INCLUDE=C:\WATCOM\H;C:\
ACADWIN\ADS

Copy the file ADS.ICO from ADS\WIN
directory to your working directory.

Lisp2C 1.9 25.06.93(C)
BASIC d.o.o.

2



2.4.WINDOWS - METAWARE

Install your Metaware HighC/C++ 3.1 compiler
and compile at least one sample file (eg
TOWER.C) from \ACADWIN\ADS, to ensure
that the compiler is set up properly.

Tip: Read README.ADS from ACADWin. Use
-NOSTUB switch with PharLap linker 5.0 or
later. Earlier versions of PharLap do not need
this switch.

Place the files L2C.EXE (Lips2C translator) and
DOS4GW.EXE (Watcom DOS extender) into
directory pointed by a system variable PATH.
We suggest C:\DOS or C:\ACAD directory.

Place MWL2CWIN.LIB and L2C.H files into \
ACADWIN\ADS directory. Point to this
directory with L2C variable:

SET L2C=C:\ACADWIN\ADS
Change IPATH variable to include \
ACADWIN\ADS directory:

SET IPATH=C:\HIGHC\H;C:\
ACADWIN\ADS

Note that paths must be set before Lisp file is
converted into C source. L2C uses the values of
these variables to produce .BAT and .MW files.
If those values are not set or set properly, .BAT
and .MW files may not compile the C files. This
does not, however, corrupt produced C code in
any way.

Copy the file ADS.ICO from \ACADWIN\
ADS\WIN directory to your working directory.
Again, this only affects the compilation with
produced .BAT and other files.

Lisp2C 1.9 25.06.93(C)
BASIC d.o.o.

2



2.5. DOS Example (Watcom)

Place the rest of the files into your working
directory. These files are included only as a
demonstration and can be deleted altogether.

Example:

Let us assume that you have correctly set up the
Watcom C/386 9.0 to the C:\WATCOM
directory. Thus, when you type SET, you might
see something like

PATH=...C:\ACAD;C:\WATCOM\BIN;
C:\WATCOM\BINB;C:\WATCOM\
LIB386\DOS;...
WATCOM=C:\WATCOM\.
INCLUDE=C:\WATCOM\H

In order to use ADS, your C:\ACAD\ADS
directory should contain at least the following
files:

WCADS90.LIB
ADSLIB.H
ADSDLG.H
ADS.H
ADSCODES.H

If those files are missing, you can copy them
from our distribution.

Now you can copy L2C.EXE to C:\ACAD
directory (listed in path), and L2C.H, L2C.LIB
into C:\ACAD\ADS directory. Also, you should
change the INCLUDE variable so that Watcom
C/386 will search for header (.h) files also in C:\
ACAD\ADS directory:

SET INCLUDE=C:\WATCOM\H;C:\
ACAD\ADS

Lisp2C 1.9 25.06.93(C)
BASIC d.o.o.

2



And finally, you should set the L2C system
variable to C:\ACAD\ADS:

SET L2C=C:\ACAD\ADS

3. THE USAGE

3.1. COMMAND LINE INPUT

Lisp2C 1.9 25.06.93(C)
BASIC d.o.o.

2



The

syntax

is:
L2C [options] file [file...]

where
options
are

d includes
debugging
information
oname sets
the
output
file
name
to
'name',
instead
to
the

name
of
1st
input
file
name
c compiler
(cWAT
=
Watcom,
cMW
=
Metaware)
e compiles
every
function

Lisp2C 1.9 25.06.93(C)
BASIC d.o.o.

2



separately
y "yes"
to
all
questions
(except
for
the
registration)
n "no" to all questions (except for
the registration)
t target (currently Dos or
WIndows)
? displays simple help

The option must be preceded with either / or -
character. If an invalid option is specified,
program terminates with a message.

File is the name of AutoLISP source file. L2C
produces file.C file (if more than one file is
specified, the first name is taken, unless /oname
option is used). In addition, one file is produced
for each (defun...) and (lambda...) These
additional files have the name of the main file
file padded with underscores ("_") to the
length of total 8 (eight) characters, and then up to
the last three characters are replaced with a
number, starting from 0.

If two different applications
are compiled on the same
directory, then the
corresponding main file
names must differ in first
five characters, or the files
of one application will
tackle with the files from the
other application.

The order of files and options is insignificant.
They can also be mixed. Example: to compile

Lisp2C 1.9 25.06.93(C)
BASIC d.o.o.

2



DLINE.LSP, one could use the following
command:

L2C ai_utils startup /odline
dline /d

which would compile AI_UTILS.LSP,
STARTUP.LSP, and DLINE.LSP into DLINE.C
and DLINE__0.C, ..., DLINE_64.C, DLINE.
BAT, DLINE.MAK, and DLINE.LNK. For
Windows, also DLINE.RC and DLINE.DEF
would be generated.

3.2. INTERACTIVE INPUT

Alternatively, one can invoke L2C without
parameters:

L2C
Input file name (.lsp):

The user then enters one file name per line. The
input is terminated with a blank line. Then the
question appears:

Include debugging information
(<Yes>/No/?):

The answer "Yes" is equivalent to specifying the
/d switch. The answer "No" is equivalent to
omiting that switch.

Next, the target environment and compiler are
specified:

Target (<Dos>/Windows/?):
Compiler (<Watcom>/Metaware/?)

Currently supported are DOS and Windows 3.1
operating systems. The code produced is the
same in both cases. However, the support files (.
BAT, .MAK, .LNK, and optionally .RC and .
DEF) files are different for those two
environments. Those two questions correspond
to /t and /c switches.

Lisp2C 1.9 25.06.93(C)
BASIC d.o.o.

2



Next, the way how produced source code will be
compiled, is choosen:

Arrange for separate
compilation of each file (Yes/
<No>/?):

This question corresponds to the /e switch. The
answer "Yes" is equivalent to specifying that
switch, and the answer "No" is equivalent to
omitting it.

Next, an answer to all questions can be specified:
Answer to all questions (Yes/
No/<Ask>/?):

This question corresponds to /y and /n
switches. The answer "Yes" is equivalent to
specifying the /y switch, the answer "No" is
equivalent to specifying the /n switch, and the
answer "Ask" is equivalent to omitting both two
switches.

Next, the code commenting can be disabled:
Comment the produced code
(<Yes>/No/?):

This question corresponds to /b switch. The
answer "Yes" is equivalent to specifying that
switch and the answer "No" is equivalent to
omiting it.

Finally, user can specify the output file name:
Output file name (5 chrs
significant) <>:

This question corresponds to an /o switch. In
angle brackets, the name of the first file appears
as a default output file name. If the default file
name is longer than 5 characters, then only the
first five characters are in the upper case, and the
rest are in the lower case letters. One should be

Lisp2C 1.9 25.06.93(C)
BASIC d.o.o.

2



aware, that Lisp2Cads will use only the first 5
characters for all files but the main .C file, the .
BAT file, and the .LNK file.
Example: to compile DLINE.LSP, one could use

the following command:
L2C
Input file name (.LSP):
AI_UTILS
Input file name (.LSP): STARTUP
Input file name (.LSP): DLINE
Input file name (.LSP):
Include debugging information
(<Yes>/No/?): Yes
Target (<Dos>/Windows/?): Dos.
Compiler (<Watcom>/Metaware/?)
: Watcom
Output file name (5 char..)
<AI_UTils>: DLINE

which would compile AI_UTILS.LSP,
STARTUP.LSP, and DLINE.LSP into DLINE.C
and DLINE__0.C, ..., DLINE_64.C, DLINE.
BAT, and DLINE.LNK.

3.3. PROJECT FILE

The third option is to invoke the compiler with
the name of the project file, preceded with an @
character. Project file is an ASCII file. Each line
is either a comment (starts with an * (asterisk) or
; (semicolon) in the 1st column), a file name, or
an option. The syntax for options is the same as
in the command line case. A sample project file
(with no comments) might look like:

ai_utils
startup
dline
/odline
/d
/tWIN
/cWAT

Lisp2C 1.9 25.06.93(C)
BASIC d.o.o.

2



/n
The default extension for a project file is .L2C.
You can specify a full project file name, if
necessary.
Example: to compile DLINE.LSP, one could use

the following command:
L2C @DLINE

which would compile AI_UTILS.LSP,
STARTUP.LSP, and DLINE.LSP into DLINE.C
and DLINE__0.C, ..., DLINE_64.C, DLINE.
BAT, DLINE.MAK, and DLINE.LNK.

3.4. SWITCHES

/D - Debugging

When this switch is used, a code is added to
every function that prints out the function name
and its arguments, and simple debugger is
enabled Also, batch and link files are set to
include the debugging information. You will find
more information about debugger in Section 6.3.

/Oname - Output filename

You can specify the output file name. If none is
specified, the first file name is taken.

/C - Compiler

Currently supported are Watcom C/386 compiler
(/CWAT) and MetaWare High C/C++ compiler
(/CMW). By default, compiler assumes Watcom
C/386. If you use MetaWare C/C++, then use /
CMW switch.

/E - Separate compiling

Lisp2C 1.9 25.06.93(C)
BASIC d.o.o.

2



By default, all the functions are included to the
main file during compile time. In this way, the C
compiler has only to be loaded once, and the
compilation process is significantly faster. Using
/E switch, you force the L2C to produce several
source files; one main source and one source file
for every LISP function. They are compiled
separately and then linked together. This way,
you can edit functions without recompiling all
the source code over and over again. Note that
this is not simply the question of the batch and
link files produced by L2C. The headers of C
source files are also different.

/Y - YES to all questions

/N - NO to all questions

Specifies that answers to all the questions are
Yes or No, respectively. If you specify both
switches, the last is used.

These two switches do not
apply to the question on
registration.

/T - target system (DOS or
Windows)

The target is the system under which the
compiled application will be running. Currently
two target systems are supported: MS-DOS and
MS-Windows. To choose MS-DOS as a
targeting environment, use /TDOS switch. To
use MS-Window as a targeting system, use /
TWIN switch. The former is default.

The
code
generated
is
the
same

Lisp2C 1.9 25.06.93(C)
BASIC d.o.o.

2



for
all
the
targets.
The
difference
is
in
the
files
that
Lisp2C
produces
to
compile
the
application.

/B - brief code generator

Normally, Lisp2C inserts corresponding parts of
Lisp code as a comment to the prodused C code.
This is intended to ease the code modification
process. However, the size of produced .C files is
expanded significantly. If you don't intend to
modify the code or you don't have enough disk
space, specify /b switch to surpress the
insertion if the comments.

/? - Help

This switch displays a simple remainder of the
switches and stops the compiler execution.

3.5. COMPILING THE CODE (WATCOM)

The C source file must be translated with
Watcom C/386 compiler. The object (.OBJ) file
produced by Watcom C/386 compiler must be
further linked together with WCADS90.LIB and
L2C.LIB libraries under DOS, or with WINADS.

Lisp2C 1.9 25.06.93(C)
BASIC d.o.o.

2



OBJ, WINADS.LIB and WINL2C.LIB libraries
under Windows.

To simplify the job, Lisp2C translator,
automatically produces several files, a batch file
named name.BAT, make file name.MAK, a link
file name.LNK, and possibly simple resource
file name.RC and a simple definition file name.
DEF. Batch file invokes the make utility to
compile and link all files into an .EXP file under
DOS, or .EXE file under Windows. The file
file.LNK uses the system variable L2C to
locate the libraries. If the user hasn't preset the
variable, file.BAT sets it to point to a \
ACAD\ADS directory (on the current drive).

If a single file is to be compiled, the command
wcc386p /mf /3s /fpi87 <file>

can be used for a DOS target. The meanings of
the options are

/mf generate the code for the
flat memory model,

/3s pass the arguments on the
stack,

/fpi87 generate in-line calls to a
math coprocessor.

Similar command for Windows environment
would be

wcc386p /mf /3s /fpi87 /s /j /
opmaxet /dWIN /dWATWIN /zW
<file>

where

/mf generate the code for the
flat memory model,

/3s pass the arguments on the
stack,

Lisp2C 1.9 25.06.93(C)
BASIC d.o.o.

2



/fpi87 generate in-line calls to a
math coprocessor,

/s remove stack overflow
checks,

/j change char default from
unsigned to signed,

/opmaxet controls several optimization
parameters,

/dWIN defines WIN symbol (as
with #define),

/dWATWIN defines WATWIN symbol,
and

/zW uses Microsoft Windows
entry/exit code.

Note that, during the compilation, a compiler
might issue several warning messages. They
refer to undefined macro symbols (used in other
systems), unreachable statements, and
unreferenced variables. This is perfectly OK, as
long as no error is produced.

3.6. LINKING (WATCOM)

To link the compiled files together, it is best to
use the generated linker file, as all the file names
must be listed. A command

wlink @file.lnk
should do the trick. However, do not forget the
"@" symbol or the file extension!

The resulting file.EXP file is ready to be
XLOADed.

3.7. BINDING (WATCOM)

When compiling for Windows environment, the
linker produces .REX file. This file has to be
further binded with resource and definition files,
file..RC and file.DEF, respectively. This
can be achieved with the command

Lisp2C 1.9 25.06.93(C)
BASIC d.o.o.

2



wbind file -R file.rc file.exe
Make sure that the ADS.ICO file is placed in the
current directory, You can find that file in \
acadwin\ads directory.

Example.

To compile DEMO.LSP the command
L2C DEMO

produces the following C source and some
support files:

DEMO.
Ccontains the main loop
DEMO__0.
Ccode for (defun qsort ...)
DEMO__1.
Ccode for (defun c:stat ...)
DEMO__2.
Ccode for (defun c:gc ...)
DEMO__3.
Ccode for (defun c:interpreter ...)
DEMO__4.
Ccode for (defun S::STARTUP ...)
DEMO.
BATbatch files that starts make utility,
DEMO.
MAKmake file,
DEMO.
LNKlink file used by DEMO.MAK.
DEMO.
RCis produced under Windows only,
a
resource
file.
DEMO.
DEFis produces under Windows only,
a
definition
file.

Lisp2C 1.9 25.06.93(C)
BASIC d.o.o.

2



Then the command
DEMO

produces (among others) ADS module, DEMO.
EXP file , which can be later loaded into
AutoCAD with the command

(xload "demo").
Under Windows, DEMO.EXE is produced,
which can be XLOADed into AUTOCAD for
WIndows.

4. SUPPORTED FUNCTIONS

Lisp2C 1.9 25.06.93(C)
BASIC d.o.o.

2



Lisp2Cads *DEMO* supports AutoLISP R12
functions, except AME and ASE support. Here is
the brief list of supported functions:

(* *error* + - / /= 1+ 1- < <= = > >= abs alloc
and append apply ascii assoc atan atof atoi atom
atoms-family(*) boole boundp caaaar caaadr
caaar caadar caaddr caadr caar cadaar cadadr
cadar caddar cadddr caddr cadr car cdaaar cdaadr
cdaar cdadar cdaddr cdadr cdar cddaar cddadr
cddar cdddar cddddr cdddr cddr cdr chr cond
cons cos defun eq equal eval exit exp expand
expt fix float foreach gc gcd getenv if itoa
lambda last length list listp load log logand
logior lsh mapcar max mem member min minusp
not nth null numberp open or prin1 princ print
progn quit quote read read-char read-line rem
repeat reverse set setq sin sqrt strcase strcat strlen
subst substr terpri trace type untrace ver vmon
while write-char write-line zerop ~
acad_colordlg acad_helpdlg acad_strsort ads
alert angle angtof angtos command cvunit
distance distof entdel entget entlast entmake
entmod entnext entsel entupd findfile getangle
getcorner getdist getfiled getint getkword
getorient getpoint getreal getstring getvar
graphscr grclear grdraw grread grtext grvecs
handent initget inters menucmd nentsel nentselp
osnap polar prompt redraw regapp rtos setvar
ssadd ssdel ssget sslength ssmemb ssname tablet
tblnext tblsearch textbox textscr trans vports
wcmatch xdroom xdsize xload xunload
load_dialog unload_dialog new_dialog
new_dialog start_dialog done_dialog
term_dialog action_tile mode_tile get_attr
get_tile set_tile start_list add_list end_list
dimx_tile dimy_tile start_image vector_image
fill_image slide_image end_image
client_data_tile)

Lisp2C 1.9 25.06.93(C)
BASIC d.o.o.

2



5. DIFFERENCES AND LIMITATIONS

5.1. EXPRESSIONS OUTSIDE THE
FUNCTIONS

Only Lisp expressions inside Lisp functions are
compiled. Other expressions are merely skipped
(and a warning message is generated). They can
be collected automatically into S::
L2CSTARTUP function (into the file ?????__S.
LSP).

5.2 NUMBER OF ARGUMENTS

User functions in Lisp2Cads can only have up to
32 arguments if they are ever to be evaluated
using EVAL, APPLY or MAPCAR function.

5.3. PASSING SYMBOLS, SUBROUTINES
ETC.

Currently, there is no (regular) way to exchange
SYMbols, SUBRoutines, EXSUBRoutines and
some other exotic data types between an ADS
application and an AutoLISP environment.
Functions that expect symbols as their arguments
(as when calling parameters by reference) should
be rewritten in a way that they would accept
strings as arguments and then READ out the
symbol. This only applies to a function that is
called from AutoLISP. Function called directly
from another L2C function can pass symbols
without any limitations.

5.4. PASSING LISTS OF INTEGERS ETC.

The transfer of the objects between AutoLISP
and an ADS application is not an exact one. For
example, if the function FOO is invoked with a
list of two integers as the only argument:
Command: (FOO '(1 2)), then an ADS
application will receive this as a 2D point, with

Lisp2C 1.9 25.06.93(C)
BASIC d.o.o.

2



integers already converted into reals. As most of
the functions that expect real value they work
well if given an integer argument, while the
opposite might not be true, Lisp2Cads
application will transform any whole element of
2D or 3D point passed from AutoLISP to integer.
Therefore an unexpected results may occur every
now and then.

Example:

AutoLisp value is seen by Lisp2C as

Lisp2C 1.9 25.06.93 (C) BASIC d.o.o.

2



AutoLISP Lisp2C
Lisp2C 1.9 25.06.93 (C) BASIC d.o.o.

2


